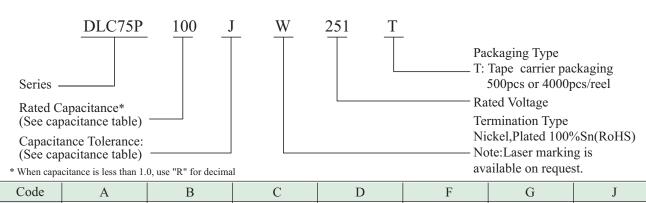


DLC75P (.060" x.030")

♦ DLC75P Capacitance & Rated Voltage Table


Cap.pF	Code	Tol.	Rated WVDC	Cap.pF	Code	Tol.	Rated WVDC	Cap.pF	Code	Tol.	Rated WVDC	
0.1	0R1			2.2	2R2		,В,	16	160			
0.2	0R2			2.4	2R4			18	180			
0.3	0R3			2.7	2R7			20	200			
0.4	0R4			3.0	3R0	A,B,		22	220			
0.5	0R5			3.3	3R3			24	240			
0.6	0R6			3.6	3R6			27	270			
0.7	0R7			3.9	3R9	C,D		30	300			
0.8	0R8	A,B, C,D	Code	4.3	4R3	A,B, C	250V Code 251	33	330	F,G,	250V Code 251	
0.9	0R9			4.7	4R7			36	360			
1.0	1R0			5.1	5R1			39	390			
1.1	1R1			5.6	5R6			43	430			
1.2	1R2			6.2	6R2		231	47	470			
1.3	1R3			6.8	6R8			51	510			
1.4	1R4			7.5	7R5				56	560		
1.5	1R5			8.2	8R2				62	620		
1.6	1R6			9.1	9R1		EC	68	680			
1.7	1R7			10	100			75	750			
1.8	1R8			11	110			82	820			
1.9	1R9			12	120				91	910		
2.0	2R0			13	130			100	101			
2.1	2R1			15	150							

Remark: special capacitance, tolerance and WVDC are available, consult with DALICAP.

 $\pm\,0.1 pF$

◆ Part Numbering

 $\pm\,0.05 pF$

 $\pm\,0.5 pF$

 $\pm\,1\%$

 $\pm 2\%$

 $\pm\,5\%$

 $\pm\,0.25 pF$

Tolerance

DLC75P(.060" x.030")

♦ DLC75P Chip Dimensions

unit:inch(millimeter)

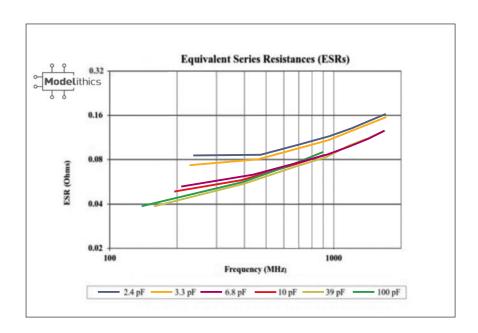
	T			Plated			
Series	Term. Code	Type / Outlines	Length	Width	Thickness	Overlap	Material
			(Lc)	(Wc)	(Tc)	(B)	
DLC75P	W	Tel	$.060 \pm .006$ (1.60 ± 0.15)	$.030 \pm .006$ (0.80 ± 0.15)	$.030 \pm .006$ (0.80 ± 0.15)	$.140 \pm .006$ (0.35 ± 0.15)	Sn/Ni (RoHS)

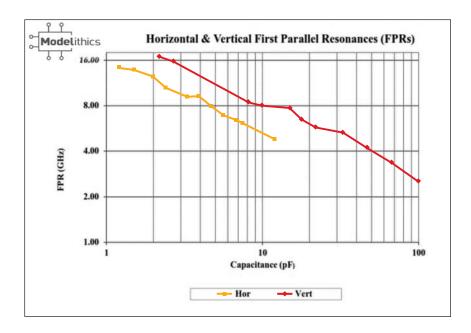
◆ Design Kits

These capacitors are 100% RoHS. Kits contain 10(ten) pieces per value; number of values per kit varies, depending on case size and capacitance.

Kit	Description (pF)	Values (pF)	Tolerance
DKDLC75P01	0.1 - 2.0	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5, 1.6, 1.8, 2.0	$\pm 0.10 pF$
DKDLC75P02	1.0 - 10	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2	±0.10pF
		10	± 5%
DKDLC75P03	10 - 100	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100	±5%

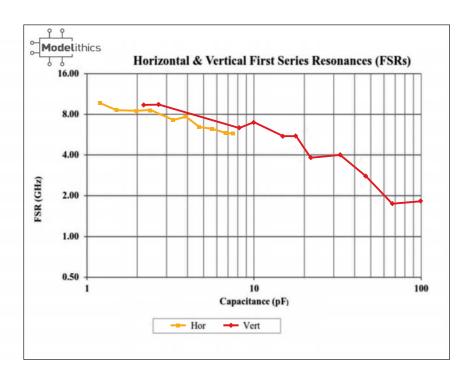
♦ Performance


Item	Specifications		
Quality Factor (Q)	2,000 min.		
Inculation Desigtance (ID)	10 ⁵ Megohms min. @ +25 °C at rated WVDC.		
Insulation Resistance (IR)	10⁴ Megohms min. @ +125 °C at rated WVDC.		
Rated Voltage	250V		
Dielectric Withstanding Voltage (DWV)	250% of rated voltage for 5 seconds.		
Operating Temperature Range	-55°C to +175°C		
Temperature Coefficient (TC)	0 ± 30 ppm/°C		
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater.		
Piezoelectric Effects	None		


♦ Environmental Tests

Item	Specifications	Method		
Terminal	Termination should not pull off.	Linear pull force exerted on axial leads soldered to		
Adhesion	Ceramic should remain undamaged.	each terminal. 2.0lbs.		
	No mechanical damage			
Resistance	Capacitance change: $-1.0\% \sim +2.0\%$	Preheat device to 150°C-180°C for 60 sec.		
to soldering heat	Q>500	Dip in 260°±5°C solder for 10±1 sec.		
	I.R. >10 G Ohms	Measure after 24±2 hours cooling period.		
	Breakdown voltage: 2.5 x WVDC			
	No mechanical damage	MIL-STD-202, Method 107, Condition A.		
	Capacitance change:±0.5% or 0.5pF max	At the maximum rated temperature (-55°C and 125°C)		
Thermal Shock	Q>2000	stay 30 minutes.		
	I.R. >10 G Ohms	The time of removing shall not be more than 3 minutes.		
	Breakdown voltage: 2.5 x WVDC	Perform the five cycles.		
	No mechanical damage			
	Capacitance change: $\pm 0.5\%$ or 0.5 pF max.	MIL-STD-202, Method 106.		
Humidity, Steady State	Q>300			
Steady State	I.R. >1 G Ohms			
	Breakdown voltage: 2.5 x WVDC			
	No mechanical damage			
T 37-14	Capacitance change: $\pm 0.3\%$ or 0.3 pF max.	MIL-STD-202, Method 103, Condition A, with 1.5 Vol D.C. applied while subjected to an environment of 85° with 85% relative humidity for 240 hours minimum.		
Low Voltage Humidity	Q>300			
1101111011	I.R. >1 G Ohms			
	Breakdown voltage: 2.5 x WVDC	-		
	No mechanical damage			
	Capacitance change: ±2.0% or 0.5pF max.	MIL-STD-202, Method 108, for 1000 hours, at 125°C. 200% Rated voltage D.C. applied.		
Life	Q>500			
	I.R. >1 G Ohms			
	Breakdown voltage: 2.5 x WVDC			

◆ DLC75P Performance Curve



The First Parallel Resonance, FPR, is defined as the lowest frequency at which a suckout or notch appears in |S21|. It is generally independent of substrate thickness or dielectric constant, but does depend on capacitor orientation. A horizontal orientation means the capacitor electrode planes are parallel to the plane of the substrate; a vertical orientation means the electrode planes are perpendicular to the substrate.

◆ DLC75P Performance Curve

The First Series Resonance, FSR, is defined as the lowest frequency at which the imaginary part of the input impedance, $\operatorname{Im}[\operatorname{Zin}]$, equals zero. Should $\operatorname{Im}[\operatorname{Zin}]$ or the real part of the input impedance, $\operatorname{Re}[\operatorname{Zin}]$, not be monotonic with frequency at frequencies lower than those at which $\operatorname{Im}[\operatorname{Zin}] = 0$, the FSR shall be considered as undefined. FSR is dependent on internal capacitor structure; substrate thickness and dielectric constant; capacitor orientation, as defined alongside the FPR plot; and mounting pad dimensions.

Definitions and Measurement conditions:

The definitions on the charts are for a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace with a 50-Ohm termination. The measurement conditions are: substrate -- Rogers RT/duroid? 5880; substrate dielectric constant = 2.20; substrate thickness (mils) = 10; gap in microstrip trace (mils) = 23.7; microstrip trace width (mils) = 30.0; Reference planes at sample edges.

All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by DLC. The models are derived from measurements on a large number of parts disposed on several different substrates.