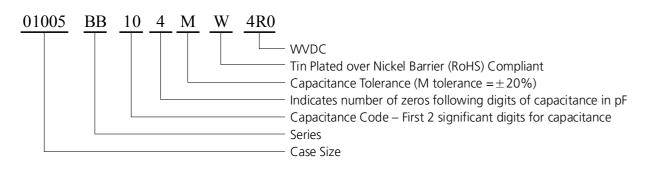


unit:inch(millimeter)

Broadband Ceramic Capacitors

Product Features

Series	Typical operating frequency range	Insertion Loss	Plated Material	Packaging Type
(.010 " × .005 ")01005BB104MW4R0	16KHz(-3dB) to >67GHz	<1dB,typical		40K pcs/reel, lower quantities in cut tape
(.020 " × .010 ")0201BB104KW160	16KHz(-3dB) to >40GHz	<1dB,typical	Aut/Ca (Ball/C)	15K pcs/reel,
(.020 " × .010 ")0201BB103KW250	16KHz(-3dB) to >32GHz	<1dB,typical	Au/Sn (RoHS)	lower quantities in cut tape
$(.040 " \times .020 ")0402BB103KW500$	16KHz(-3dB) to 40GHz	<1dB,typical	Au/Sn (RoHS)	10K pcs/reel,
(.040 " × .020 ")0402BB104KW500	16KHz(-3dB) to 50GHz	<1.2dB,typical	Au 311 (110113)	lower quantities in cut tape
(.080 " × .050 ")0805BB103KW101	16KHz(-3dB) to 3GHz	<0.25dB,typical	Ni/Sn(RoHS)	

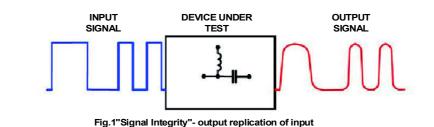

Mechanical Dimensions

	Code	Capacitor Dimensions					
Outlines		Length (L)	Width (W)	Thick. (T)	(S)		
	01005	$.016 \pm .001 \\ (0.40 \pm 0.03)$	$\begin{array}{c} .008 \pm .001 \\ (0.20 \pm 0.03) \end{array}$	$\begin{array}{c} .008 \pm .001 \\ (0.20 \pm 0.03) \end{array}$.005(0.13)min		
	0201	$.023 \pm .001 \\ (0.58 \pm 0.03)$	$.012 \pm .001 \\ (0.30 \pm 0.03)$.0118(0.30)max	.0078(0.20)min		
	0402	$.040 \pm .004$ (1.016 \pm 0.102)	$.020 \pm .004$ (0.508 \pm 0.102)	.024(0.61)max	.016(0.406)min		
	0805	.080 ± .006 (2.03 ± 0.15)	$.050 \pm .006$ (1.27 ± 0.15)	.040(1.02)max	.044(1.12)min		

Electrical Specifications

Item	Series						
Rated Voltage	01005BB104 MW4R0	0201BB104 KW160	0201BB103 KW250	0402BB103 KW500	0402BB104 KW500	0805BB103 KW101	
	4WVDC	16WVDC	25WVDC	50WVDC	50WVDC	100WVDC	
Capacitance	100nF	100nF	10nF	10nF	100nF	10nF	
Operating Temperature Range.	-55°C to +85°C -55°C to +125°C						
Insulation Resistance (IR)	$10^{11}\Omega$ min. @ +25°C @ rated WVDC						
Dielectric Withstanding Voltage (DWV)	250% of rated voltage for 5 seconds.						
Temperature Coefficient (TC)	±15%						

Part Numbering



Introduction

There are a number of circuits that require coupling RF signals or bypassing them to ground while blocking DC over extraordinarily large RF bandwidths. The applications for which they are intended typically require small, surface-mountable (SMT) units with low insertion losses, reflections, and impedances across RF frequencies extending from the tens of KHz to the tens of GHz. and temperatures typically ranging from -55 to +85 °C. This note focuses on a particular implementation of these devices -- multilayer ceramic capacitors (MLCCs)- and how to obtain the best performance when they're used on various substrates.

Broadband capacitors are used in the "signal integrity" market -- optoelectronics/high-speed data; ROSA/TOSA (Transmit/Receive optical subassemblies); SONET (Synchronous Optical Networks); broadband test equipment - as well as in broadband microwave and millimeter wave amplifiers (MMICs, GaN transistors) and oscillators. The basic requirement in the former is to produce an output waveform that closely replicates an input waveform, typically a train of digital pulses, as shown in Fig.1.

While RF and microwave devices are typically measured in the frequency domain, digital systems are usually characterized in the time domain, and so it is necessary to make a connection between the two (Fig.2).

FREQUENCY DOMAINInsertion lossReflection

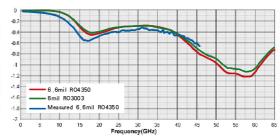
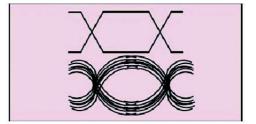



Fig.2 Frequency domain and time domain parameters

- TIME DOMAIN
- Rise and fall timesEye opening
- Eye oper
- Jitter

