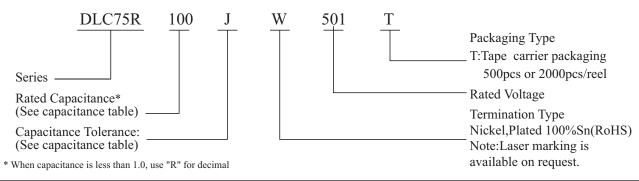


DLC75R (.070" x .080")


♦ DLC75R Capacitance & Rated Voltage Table

Cap.pF	Code	Tol.	Rated WVDC	Cap.pF	Code	Tol.	Rated WVDC	Cap.pF	Code	Tol.	Rated WVDC
1.0	1R0			3.9	3R9		500V Code 501	22	220		500V Code 501
1.1	1R1			4.3	4R3			24	240		
1.2	1R2			4.7	4R7			27	270	G,J	
1.3	1R3			5.1	5R1			30	300		
1.4	1R4			5.6	5R6			33	330		
1.5	1R5			6.2	6R2	В,		36	360		
1.6	1R6		500V Code 501	6.8	6R8	C,D		39	390		
1.7	1R7			7.5	7R5			43	430		
1.8	1R8	B,		8.2	8R2			47	470		
1.9	1R9	C,D		9.1	9R1			51	510		
2.0	2R0			10	100			56	560		
2.1	2R1			11	110			62	620		
2.2	2R2			12	120			68	680		
2.4	2R4			13	130	G,J		75	750		
2.7	2R7			15	150			82	820		
3.0	3R0			16	160			91	910		
3.3	3R3			18	180			100	101		
3.6	3R6			20	200						

Remark: special capacitance, tolerance and WVDC are available, consult with DALICAP.

♦ Part Numbering

Code	A	В	C	D	F	G	J
Tolerance	$\pm0.05 \mathrm{pF}$	± 0.1pF	$\pm0.25 \mathrm{pF}$	± 0.5pF	±1%	± 2%	± 5%

♦ DLC75R Chip Dimensions

unit:inch(millimeter)

	Т			Plated			
Series	Term.	Type / Outlines	Length	Width	Thickness	Overlap	Material
	Code		(Lc)	(Wc)	(Tc)	(B)	Material
DLC70R	W	Te	$.070 \pm .006$ (1.78 ± 0.15)	$.080 \pm .010$ (2.03 ± 0.25)	.120 (3.04) max	$.200 \pm .010$ (0.50 ± 0.25)	Sn/Ni (RoHS)

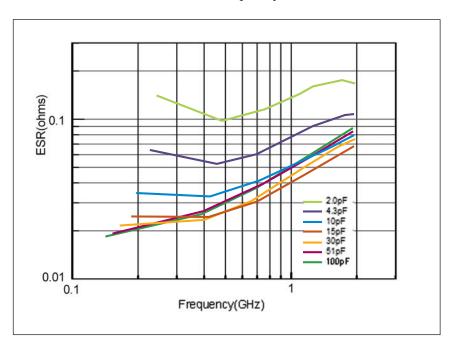
◆Design Kits

These capacitors are 100% RoHS. Kits contain 10(ten) pieces per value; number of values per kit varies, depending on case size and capacitance.

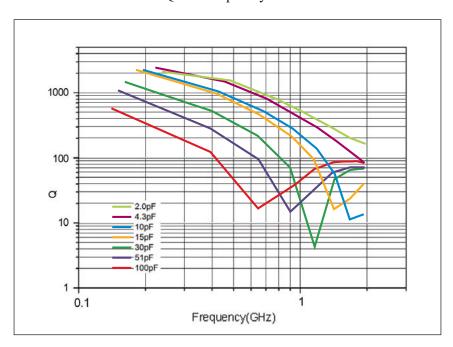
Kit	Description (pF)	Values (pF)	Tolerance
DKDLC75R01	1.0 - 3.6	1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6	±0.10pF
DKDLC75R02	3.6 - 20	3.9, 4.3, 4.7, 5.1, 5.6, 6.2, 6.8, 7.5, 8.2, 9.1	± 0.10pF
		10, 11, 12, 13, 15, 16, 18, 20	±5%
DKDLC75R03	22 - 100	22, 24, 27, 30,33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91, 100	±5%

♦ Performance

Item	Specifications				
Quality Factor (Q)	2,000 min.				
Ingulation Desigtance (ID)	10 ⁵ Megohms min. @ +25 °C at rated WVDC.				
Insulation Resistance (IR)	10⁴ Megohms min. @ +125 °C at rated WVDC.				
Rated Voltage	500V				
Dielectric Withstanding Voltage (DWV)	250% of rated voltage for 5 seconds.				
Operating Temperature Range	–55℃ to +125℃				
Temperature Coefficient (TC)	0 ± 30ppm/℃				
Capacitance Drift	\pm 0.2% or \pm 0.05pF, whichever is greater.				
Piezoelectric Effects	None				

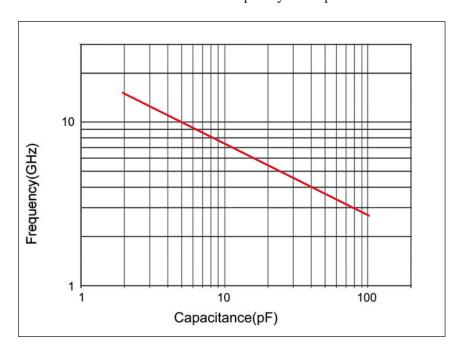

◆Environmental Tests

Item	Specifications	Method				
Terminal	Termination should not pull off.	Linear pull force exerted on axial leads soldered to				
Adhesion	Ceramic should remain undamaged.	each terminal. 2.0lbs.				
	No mechanical damage					
Resistance	Capacitance change: $-1.0\% \sim +2.0\%$	Preheat device to 150°C-180°C for 60 sec.				
to soldering heat	Q>500	Dip in 260°±5°C solder for 10±1 sec.				
	I.R. >10 G Ohms	Measure after 24±2 hours cooling period.				
	Breakdown voltage: 2.5 x WVDC					
	No mechanical damage	MIL-STD-202, Method 107, Condition A.				
	Capacitance change:±0.5% or 0.5pF max	At the maximum rated temperature stay 30 minutes.				
Thermal	Q>2000	The time of removing shall not be more than 3 minutes.				
Shock	I.R. >10 G Ohms	Perform the five cycles.				
	Breakdown voltage: 2.5 x WVDC					
	No mechanical damage					
	Capacitance change: ±0.5% or 0.5pF max.	MIL-STD-202, Method 106.				
Humidity, Steady State	Q>300					
Steady State	I.R. >1 G Ohms					
	Breakdown voltage: 2.5 x WVDC					
	No mechanical damage					
I Valta	Capacitance change: $\pm 0.3\%$ or 0.3 pF max.	MIL-STD-202, Method 103, Condition A, with 1.5 V				
Low Voltage Humidity	Q>300	D.C. applied while subjected to an environment of 85°C				
·	I.R. >1 G Ohms	with 85% relative humidity for 240 hours minimum.				
	Breakdown voltage: 2.5 x WVDC					
	No mechanical damage					
	Capacitance change: ±2.0% or 0.5pF max.	MIL-STD-202, Method 108, for 1000 hours, at the				
Life	Q>500	maximum rated temperature. 200% Rated voltage				
	I.R. >1 G Ohms	D.C. applied.				
	Breakdown voltage: 2.5 x WVDC	D.C. approd.				



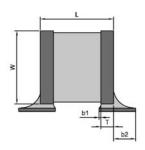
♦ DLC75R Performance Curve

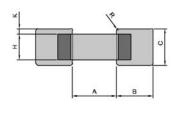
ESR vs Frequency


Q vs Frequency

♦ DLC75R Performance Curve

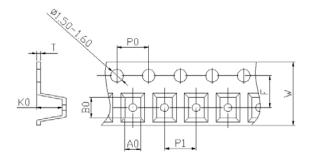
First Parallel Resonant Frequency vs Capacitance




♦ Recommended Land Pattern Dimensions

When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

- 1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.
- 2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.


Orientation	EIA	A	В	С
Vertical	0708	0.90	1.00	2.90

◆Tape & Reel Specifications

Orientation	EIA	A0	В0	K0	W	P0	P1	Т	F	Qty/Min	Qty/reel	Tape Material
Vertical	0708	1.90	2.65	2.20	12.00	4.00	4.00	0.30	5.50	500	1500	Plastic

