
DLC75N(0201)

◆DLC75N Capacitance & Rated Voltage Table

Cap.pF	Code	Tol.	Rated WVDC	Cap.pF	Code	Tol.	Rated WVDC	Cap.pF	Code	Tol.	Rated WVDC		
				2.2	2R2			16	160				
0.2	0R2			2.4	2R4			18	180				
0.3	0R3			2.7	2R7								
0.4	0R4			3.0	3R0	A,B, C,D							
0.5	0R5			3.3	3R3								
0.6	0R6			3.6	3R6								
0.7	0R7			3.9	3R9					F,G, J	25V Code 250		
0.8	0R8	A,B, C,D	25V	4.3	4R3								
0.9	0R9		Code	4.7	4R7								
1.0	1R0			5.1	5R1								
1.1	1R1			5.6	5R6								
1.2	1R2			6.2	6R2	B,C F,G,							
1.3	1R3			6.8	6R8								
1.4	1R4			7.5	7R5		B,C	B,C					
1.5	1R5			8.2	8R2								
1.6	1R6			9.1	9R1								
1.7	1R7			10	100								
1.8	1R8			11	110								
1.9	1R9			12	120								
2.0	2R0			13	130		J						
2.1	2R1			15	150								

Remark: special capacitance, tolerance and WVDC are available, consult with DALICAP.

♦ Part Numbering

♦ DLC75N Chip Dimensions

unit:inch(millimeter)

	Term. Code			Dlatad			
Series		Type / Outlines	Length (Lc)	Width (Wc)	Thickness (Tc)	Overlap (B)	Plated Material
DLC75N	W	Tel	$.024 \pm .001$ (0.60 ± 0.03)	$.012 \pm .001$ (0.30 ± 0.03)	$.012 \pm .001$ (0.30 ± 0.03)	.004 ~.008 (0.10~ 0.20)	Sn/Ni (RoHS)

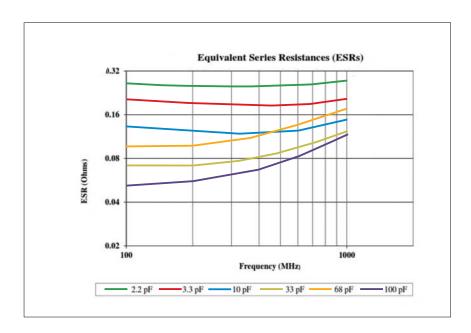
◆ Design Kits

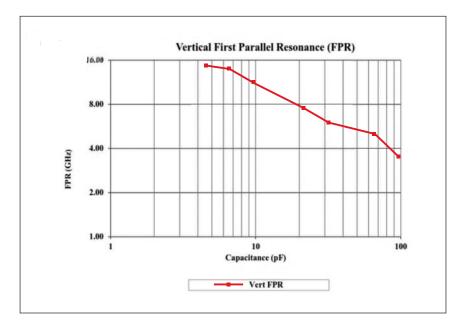
These capacitors are 100% RoHS. Kits contain 10(ten) pieces per value; number of values per kit varies, depending on case size and capacitance.

Kit	Description (pF)	Values (pF)	Tolerance
DKDLC75N01	0.2 - 2.0	0.2, 0.3, 0.5, 0.7, 0.8, 0.9, 1.0, 1.3, 1.5, 1.7, 1.9, 2.0	±0.10pF
DKDLC75N02	1.0 - 10	1.0, 1.3, 1.5, 1.7, 1.9, 2.0, 2.2, 2.7, 3.0, 3.9, 4.7, 5.6, 6.8, 7.5, 8.2	±0.10pF
	1.0 - 10	10	± 5%
DKDLC75N03	10 - 18	10, 12, 13, 15, 16, 18	± 5%

♦ Performance

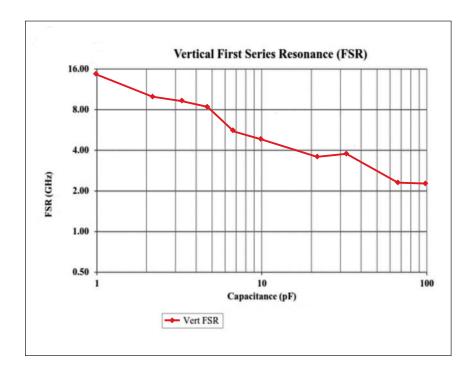
Item	Specifications		
Quality Factor (Q)	2,000 min.		
Insulation Resistance (IR)	10 ⁵ Megohms min. @ +25 °C at rated WVDC.		
Rated Voltage	25V		
Dielectric Withstanding Voltage (DWV)	250% of rated voltage for 5 seconds.		
Operating Temperature Range	-55°C to +150°C		
Temperature Coefficient (TC)	0 ± 30ppm/℃		
Capacitance Drift	$\pm 0.2\%$ or ± 0.05 pF, whichever is greater.		
Piezoelectric Effects	None		




♦ Environmental Tests

Item	Specifications	Method		
Terminal	Termination should not pull off.	Linear pull force exerted on axial leads soldered to		
Adhesion	Ceramic should remain undamaged.	each terminal. 2.0lbs.		
	No mechanical damage			
Resistance	Capacitance change: $-1.0\% \sim +2.0\%$	Preheat device to 150°C-180°C for 60 sec.		
to soldering heat	Q>500	Dip in 260°±5°C solder for 10±1 sec.		
	I.R. >10 G Ohms	Measure after 24±2 hours cooling period.		
	Breakdown voltage: 2.5 x WVDC			
	No mechanical damage	MIL-STD-202, Method 107, Condition A.		
	Capacitance change:±0.5% or 0.5pF max	At the maximum rated temperature stay 30 minutes.		
Thermal	Q>2000	The time of removing shall not be more than 3 minutes.		
Shock	I.R. >10 G Ohms	Perform the five cycles.		
	Breakdown voltage: 2.5 x WVDC			
	No mechanical damage			
	Capacitance change: ±0.5% or 0.5pF max.	MIL-STD-202, Method 106.		
Humidity, Steady State	Q>300			
Steady State	I.R. >1 G Ohms			
	Breakdown voltage: 2.5 x WVDC			
	No mechanical damage			
T 37-14	Capacitance change: ±0.3% or 0.3pF max.	MIL-STD-202, Method 103, Condition A, with 1.5 Volts		
Low Voltage Humidity	Q>300	D.C. applied while subjected to an environment of 85		
,	I.R. >1 G Ohms	with 85% relative humidity for 240 hours minimum.		
	Breakdown voltage: 2.5 x WVDC	-		
	No mechanical damage			
	Capacitance change: ±2.0% or 0.5pF max.	MIL-STD-202, Method 108, for 2000 hours, at the maximum rated temperature, 200% Rated voltage D.C. applied.		
Life	Q>500			
	I.R. >1 G Ohms			
	Breakdown voltage: 2.5 x WVDC	rr		

◆ DLC75N Performance Curve



The First Parallel Resonance, FPR, is defined as the lowest frequency at which a suckout or notch appears in |S21|. It is generally independent of substrate thickness or dielectric constant, but does depend on capacitor orientation. A horizontal orientation means the electrode planes are parallel to the substrate.

◆ DLC75N Performance Curve

The First Series Resonance, FSR, is defined as the lowest frequency at which the imaginary part of the input impedance, Im[Zin], equals zero. Should Im[Zin] or the real part of the input impedance, Im[Zin], not be monotonic with frequency at frequencies lower than those at which Im[Zin] = 0, the FSR shall be considered as undefined. FSR is dependent on internal capacitor structure; substrate thickness and dielectric constant; capacitor orientation, as defined alongside the FPR plot; and mounting pad dimensions.

Definitions and Measurement Conditions:

The definitions on the FPR and FSR charts are for a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace with a 50-Ohm termination. The measurement conditions are: substrate -- Rogers RO3006; substrate dielectric constant = 6.15; substrate thickness (mils) = 10; gap in microstrip trace (mils) = 6.0; microstrip trace width (mils) = 14.1; Reference planes at sample edges.

All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by DALICAP. The models are derived from measurements on a large number of parts disposed on several different substrates.